You are here

News

go to the HLT-NLP News

04/07/2017

"Guiding Neural Machine Translation Decoding with External Knowledge"
Rajen Chatterjee, Matteo Negri, Marco Turchi, Marcello Federico, Lucia Specia, and Frédéric Blain

"Multi-Domain Neural Machine Translation through Unsupervised Adaptation"
M. Amin Farajian, Marco Turchi, Matteo Negri, Marcello Federico

05/06/2017

"MMT: New Machine Translation Technology for CAT Tools"
Luisa Bentivogli, Marcello Federico

08/05/2017

"Continuous Learning from Human Post-edits for Neural Machine Translation"
Marco Turchi, Matteo Negri, Amin Farajian and Marcello Federico

"Linguistically Motivated Vocabulary Reduction for Neural Machine Translation"
Duygu Ataman, Matteo Negri, Marco Turchi and Marcello Federico

"MMT: New Open Source MT for the Translation Industry"
Nicola Bertoldi, Roldano Cattoni, Mauro Cettolo, Amin Farajian, Marcello Federico, Davide Caroselli, Luca Mastrostefano, Andrea Rossi, Marco Trombetti, Ulrich Germann, David Madl

02/05/2017

Title of the thesis: "Adaptive Quality Estimation for Machine Translation and Automatic Speech Recognition"
Advisor: Matteo Negri
Co-advisors: Marco Turchi and Marcello Federico

10/02/2017

Automatic Translation Memory Cleaning
Matteo Negri, Duygu Ataman, Masoud Jalili Sabet, Marco Turchi, Marcello Federico

06/02/2017

Neural vs. Phrase-Based Machine Translation in Multi-Domain Scenario
M. Amin Farajian, Marco Turchi, Matteo Negri, Nicola Bertoldi and Marcello Federico

21/01/2017

The first Automatic Translation Memory Cleaning Shared Task
Eduard Barbu, Carla Parra Escartín, Luisa Bentivogli, Matteo Negri, Marco Turchi, Constantin Orasan, Marcello Federico

20/12/2016

Online Automatic Post-editing for MT in a Multi-Domain Translation Environment
Rajen Chatterjee, Gebremedhen Gebremelak, Matteo Negri and Marco Turchi

16/12/2016

DNN adaptation by automatic quality estimation of ASR hypotheses
Daniele Falavigna, Marco Matassoni, Shahab Jalalvand, Matteo Negri, Marco Turchi

20/10/2016

Creating a Ground Truth Multilingual Dataset of News and Talk-Show Transcriptions through Crowdsourcing
Rachele SprugnoliGiovanni MorettiLuisa BentivogliDiego Giuliani 

Pages